PAF Version 4.0.5 Release Notes

PAF Version 4.0.5 Release Notes

The Predictive Analytics Framework v 4.0.5 features include:

  • A updated Python 3.9.2 system binary to mitigate CVE-2021-3177
  • A complete Linux build environment (gcc, make, binutils)
  • Our increased security features (iptables, fail2ban, custom configurations)
  • OptimR Module for R version 4.0.5  
  • 99% of all CRAN installed. (>16k Packages)
  • Open Source (free) RStudio Shiny Server on port 3838
  • RStudio Desktop version 1.4.1106
  • RStudio Server (free) version 1.4.1106 on port 8787
    (user ubuntu has a default password your AWS instanceID)
  • Microsoft JDBC Driver 6.0 for SQL Server in the directory /usr/local/drivers/
  • Licensed Intel Distribution for Python (versions 2.7.14 & 3.6.3)Performance accelerations: Scikit-learn with Intel® Data Analytics Acceleration Library (Intel® DAAL), fast Fourier transforms in SciPy and Numpy, universal functions (ufuncs) can use multiple cores and Single Instructions Multiple Data (SIMD), and neural network enhancements for pyDAAL
    Tech preview: High-level Python API for Intel® DAAL

OptimR Module for R version 4.0.5 

PAF version 4.0.5 includes the latest release of R (4.0.5) optimized and compiled with open source Message Passing Interface (Open MPI 4.0.4) support. Our code examples run twice as fast as the same code running under conventionally compiled R on only a single core. The performance is likely even better in multi-core environments. This could have a considerable impact on your calculation, but, like any computing, it depends on exactly what you are doing.

As with any interpreted language invoked under Linux the way to use the compiled R we provide is through use of the shebang syntax.
To use PAF optimized R this start scripts with this shebang line:


Note: the version of R we have added to the operating system is under /usr/local/.

Intel Corporation Python 2.7.14 can be found at:


Intel Corporation Python 3.6.3 can be found at: